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Abstract
The Grassmann path integral approach is used to calculate exact partition
functions of the Ising model on M × N square (sq), plane triangular (pt) and
honeycomb (hc) lattices with periodic–periodic (pp), periodic–antiperiodic
(pa), antiperiodic–periodic (ap) and antiperiodic–antiperiodic (aa) boundary
conditions. The partition functions are used to calculate and plot the specific
heat, C/kB , as a function of temperature, θ = kBT /J . We find that for the
N × N sq lattice, C/kB for pa and ap boundary conditions are different from
those for aa boundary conditions, but for the N×N pt and hc lattices, C/kB for
ap, pa and aa boundary conditions have the same values. Our exact partition
functions might also be useful for understanding the effects of lattice structures
and boundary conditions on critical finite-size corrections of the Ising model.

PACS numbers: 05.50.+q, 05.70.Jk, 64.60.Cn

1. Introduction

Universality and scaling are two important concepts in the theory of critical phenomena
[1, 2] and the Ising model [3] has been widely used in such studies. Recently, exact universal
amplitude ratios and finite-size corrections to scaling in a critical Ising model on planar lattices
have received much attention [4–12]. This may be due to the fact that the hypothesis of
universality naturally leads to the consideration of universal critical amplitudes and amplitude
combinations [13], and for the comparison between experiment and theory in relation to
scaling and universality, it is often a more rigorous test to use amplitude relations rather than
critical exponent values. Moreover, it is also well known that the finite-size scaling functions
depend on the boundary conditions [14], and there has been considerable recent interest in
studying the lattice model with various boundary conditions [15–21]. The study of exact
universal amplitude ratios and finite-size corrections to scaling in the critical Ising model is
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usually based on the analytical solutions of the model on finite lattices. Although the exact
solution of the Ising model on the M × N square (sq) lattice was obtained a long time ago
[22], and the exact expression of the partition function of the Ising model on the M × N

plane triangular (pt) lattice was obtained by lattice field theories recently [23], there are still
no published results for the exact solutions of the Ising model on M × N pt and honeycomb
(hc) lattices with periodic–aperiodic boundary conditions. The purpose of this paper is to
fill this gap. In the present paper we use the Grassmann path integral to calculate the exact
partition functions of the Ising model on M ×N sq, pt and hc lattices with periodic–periodic
(pp), periodic–antiperiodic (pa), antiperiodic–periodic (ap) and antiperiodic–antiperiodic (aa)
boundary conditions. The partition functions are used to calculate and plot the specific heat,
C/kB , as a function of temperature, θ = kBT /J . We find that for the N ×N sq lattice, C/kB

for pa and ap boundary conditions are different from those for aa boundary conditions, but
for the N × N pt and hc lattices, C/kB for ap, pa and aa boundary conditions have the same
values. Our exact partition functions might also be useful for understanding the effects of
lattice structures and boundary conditions on critical finite-size corrections of the Ising model.

The two-dimensional Ising model on the sq lattice at vanishing magnetic field was first
solved by Onsager by the use of Lie algebra [3]. The exact solution he obtained was an
Ising model on an infinite lattice. The original method was rather complicated, and it was
later improved by Kaufman [22] who obtained the exact solution of the Ising model on
a finite torus by using the theory of spinor representation. The successful treatments of
the two-dimensional Ising model brought the studies of phase transition into the modern
era. Onsager’s solution, on the one hand, showed that the previous classical theories were
unreliable in their quantitative predictions, and on the other, provided a great stimulus to
explore the true behaviour near the critical point. After Onsager’s original solution, many quite
different mathematical approaches were developed, but the approaches were still complicated.
Among them, Schultz et al gave explicitly the fermionic treatment in the framework of
transfer-matrix formalism [24], and Kac and Ward developed the combinatorial method
[25, 26]. Both methods reformulated the two-dimensional Ising model as a free-fermionic
field theory in terms of anticommuting Grassmann variables, which enclosed the fact that the
Ising model on two-dimensional regular lattices may be viewed as free-fermionic theory. The
other alternative method in the literature was the Pfaffian representation, which was introduced
by Kasteleyn [27] to translate Ising spins into dimers that can be reduced to some Pfaffian
[28]. Stephenson has used the Pfaffian representation to solve the Ising model on the pt lattice,
but the solution was restricted to the 6L × 6L lattice due to its 6 × 6 basic nonvanishing
matrix elements and was exact only in the limit of L → ∞ [29]. Recently, by using the
connections between Pfaffian, dimer and Ising models, Nash and O’Connor have obtained
the exact expression of the partition function of the pt lattice Ising model on a finite torus
[23]. They first employed the lattice field theories to obtain the exact partition function of
the Gaussian model, and then established the exact expression of the partition function of
the pt lattice Ising model from the analysis of the appropriate lattice determinants and the
parametrization according to the results in [29].

On the other hand, in view of the simplification of the approach, remarkable progress was
achieved by Plechko who modified the traditional fermionic interpretation and introduced a
nonstandard approach [30]. By the use of this approach, Plechko himself not only rederived
Onsager’s and Kaufman’s results in a relatively simple way [30], but also obtained the partition
functions of a class of triangular-type decorated lattices [31], and a triangular lattice net
with holes [32]. Quite recently, by using the same approach, Wu et al [4] have obtained
the M × N sq lattice Ising model with the periodic–aperiodic boundary condition, and Liaw
et al [33] have successfully solved the triangular and hexagonal lattices on a cylinder geometry



Exact partition functions of the Ising model on M × N planar lattices 5191

(M ×∞) with periodic and antiperiodic boundary conditions. This approach is based on the
integration over the anticommuting Grassmann variables and the mirror-ordered factorization
principle in two-dimensional density matrix [30–33], and does not involve the traditional
transfer-matrix or combinatorial considerations. The whole scheme of the method can be
illustrated schematically as shown below [30]:

Z = Sp
(σ )

{Z(σ)} → Sp
(σ |χ)

{Z(σ |χ)} → Sp
(χ)

{Z(χ)} = Z

where ‘Sp’ stands for the average over spin variables (σ ) or Grassmann variables (χ). The
original partition function Z is expressed purely by spin variables (σ ) at each lattice site. With
a set of anticommuting Grassmann variables (χ) being introduced to factorize the local bond
Boltzmann weight such that spin variables are decoupled, the partition function passes to a
mixed Z (σ |χ ) representation. Then, by eliminating the spin variables in the mixed Z (σ |χ )

representation, the fermionic interpretation Z (χ) of the two-dimensional Ising model can be
obtained, and after carrying out the Grassmann integral, the analytical solution for the partition
function and free energy can be achieved [30–33].

In the present paper, we work in this framework to obtain exact partition functions of
M × N pt and hc lattices with different boundary conditions, including pp, pa, ap and aa
boundary conditions. We used these results to calculate and plot specific heat, C/kB , as a
function of temperature, θ = kBT /J . Our results show that for the sq lattice, C/kB for pa and
ap boundary conditions are different from those for aa boundary conditions, but for the pt and
hc lattices, C/kB for ap, pa and aa boundary conditions have the same values. Besides these
analyses, our exact partition functions may also be used for understanding the effects of lattice
structures and boundary conditions on critical properties and critical finite-size corrections of
the Ising model.

This paper is organized as follows. In section 2, we set up a general form of the partition
function for pt and hc lattices. Then, three pairs of conjugate Grassmann variables are
introduced for a lattice site to factorize the Boltzmann weights, and the principle of mirror
ordering is used to rearrange the Grassmann factors so we can perform the summation over
Ising spins to obtain a pure fermionic expression of the partition function. In section 3, using
the Fourier transform technique we complete the integrations over the Grassmann variables
to obtain the exact solution of the partition function. Then, the solution is subjected to
periodic–aperiodic boundary conditions, including pp, pa, ap and aa boundary conditions. We
further consider the shift behaviour of the maximum of the specific heats of these systems in
section 4. Finally, we discuss some problems for further studies in section 5.

2. The partition function

Consider Ising ferromagnets on M × N pt and hc lattices as shown in figure 1, in which the
former is considered as a sq lattice with a single second-neighbour interaction, and the latter
contains an inner spin in each lattice cell. The corresponding Hamiltonians, respectively, read

Ht = −
M∑

m=1

N∑
n=1

(J1σmnσm+1n + J2σmnσmn+1 + J3σm+1nσmn+1) (1)

and

Hh = −
M∑

m=1

N∑
n=1

(J1σ0σmn + J2σ0σmn+1 + J3σ0σm+1n) (2)
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Figure 1. (a) The global structure of the triangular lattice used in this paper. A basic cell of the
lattice site is given by (m, n), and the coupling constants are J1, J2 and J3. (b) The global structure
of the honeycomb lattice used in this paper. Each basic cell contains an inner Ising spin σ0.

where Ji with i = 1, 2, 3 are the coupling constants (Ji > 0 for ferromagnetic lattices),
σmn = ±1 is the Ising spin located at the site (m, n), and σ0 denotes the inner Ising spin in the
hc lattice. Using the identity of the Boltzmann weight,

exp(βJiσµσν) = cosh(βJi)[1 + tanh(βJi)σµσν ] (3)

β = (kBT )−1, and performing the sum over σ0, the partition functions of the two lattices can
be formulated in a single three-spin-polynomial representation,

Z = 2Ns

[
nb∏
i=1

cosh(βJi)

]Ns

Sp
(σ )

{
M∏

m=1

N∏
n=1

(α0 + α1σmnσm+1n + α2σmnσmn+1 + α3σm+1nσmn+1)

}

(4)

where Ns is the number of lattice sites (Ns = MN for sq and pt lattices, Ns = 2MN for the
hc lattice) and nb is the number of bonds per lattice cell (nb = 2 for sq lattice, nb = 3 for pt
and hc lattices), the symbol ‘Sp’ stands for the spin average defined by

Sp
(σi )

[· · ·] = 1
2

∑
(σi=±1)

[· · ·] Sp
(σi )

[1] = 1 Sp
(σi )

[σi] = 0 (5)

and αi are defined as

αT
0 = 1 + t1t2t3 αT

1 = t1 + t2t3 αT
2 = t2 + t3t1 αT

3 = t3 + t1t2 (6)

ti = tanh(βJi) with i = 1, 2, 3, for the pt lattice, and

αH
0 = 1 αH

1 = t1t3 αH
2 = t1t2 αH

3 = t2t3 (7)

for the hc lattice.
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To factorize the partition, we rewrite the partition function as

ZH = 2Ns

[
nb∏
i=1

cosh(βJi)

]Ns

Sp
(σ )

{
M∏

m=1

N∏
n=1

r0(1 + r1σmnσm+1n)(1 + r2σmnσmn+1)

× (1 + r3σm+1nσmn+1)

}
(8)

where ri with i = 0, 1, 2, 3 vary from one lattice to the other, and are related to αi as

α0 = r0(1 + r1r2r3) α1 = r0(r1 + r2r3) α2 = r0(r2 + r1r3) α3 = r0(r3 + r1r2).

(9)

For the pt lattice, the relation between ri and ti is trivial, i.e. r0 = 1 and ri = ti , but for the hc
lattice, the relation is nontrivial and is determined by equations (7) and (9).

It is more convenient to define the generalized reduced partition function as

Q = rMN
0 Q̃ (10)

with

Q̃ =
M∏

m=1

N∏
n=1

Sp
(σmn)

[(1 + r1σmnσm+1n)(1 + r2σmnσmn+1)(1 + r3σmn+1σm+1n)]. (11)

To construct the fermionic representation of the generalized partition function, we
associate each lattice site (m, n) with three pairs of conjugate Grassmann variables,
{amn, a

∗
mn; bmn, b

∗
mn; cmn, c

∗
mn} ∈ χ . All of these Grassmann variables are anticommuting,

and their squares are zero. Their integrals obey the basic rules [34]∫
dχ = 0,

∫
dχ · χ = 1 (12)∫

dχ ·�(χ + η) =
∫

dχ ·�(χ) (13)

for an arbitrary vector η with anticommuting components, and there is the relation

1 + riσµσν =
∫

dχ∗ dχ eχχ∗(1 + χσµ)(1 + riχ
∗σν). (14)

Using these Grassmann variables, we can rewrite the reduced partition function as [30]

Q̃ =
M∏

m=1

N∏
n=1

Sp
(σmn)

[
Sp

(amn,bmn,cmn)

(AmnA
∗
m+1nBmnB

∗
mn+1Cmn+1C

∗
m+1n)

]
(15)

where ‘Sp
(χi)

’ stands for the averaging with Gaussian weight

Sp
(χi )

[· · ·] =
∫

dχ∗i dχi eχiχ
∗
i [· · ·] (16)

with the rules

Sp
(χi )

[χiχ
∗
i ] = −Sp

(χi )

[χ∗i χi] = 1 (17)

Sp
(χi )

[χi] = Sp
(χi)

[χ∗i ] = 0 (18)

and the Grassmann factors, A,A∗, B,B∗, C and C∗, are defined as

Amn = 1 + amnσmn A∗mn = 1 + r1a
∗
m−1nσmn (19)
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Bmn = 1 + bmnσmn B∗mn = 1 + r2b
∗
mn−1σmn (20)

Cmn = 1 + cmn−1σmn C∗mn = 1 + r3c
∗
m−1nσmn. (21)

In this way, a Boltzmann weight is decoupled to the product of two factors of separated spins.
For simplicity, we express the reduced partition function as

Q̃ = Sp
(a,b,c)

{
M∏

m=1

N∏
n=1

	A
mn	

B
mn	

C
mn

}
(22)

where 	A
mn, 	B

mn and 	C
mn are defined by

	A
mn = Sp

(σmn)

(AmnA
∗
m+1n) (23)

	B
mn = Sp

(σmn)

(BmnB
∗
mn+1) (24)

	C
mn = Sp

(σmn)

(Cmn+1C
∗
m+1n). (25)

We first treat the boundary weight and consider periodic boundary condition in both
directions:

	A
Mn = Sp

(σMn)

[(1 + aMnσMn)(1 + r1a
∗
MnσM+1n)]

= Sp
(σMn)

[(1 + r1a
∗
0nσ1n)(1 + aMnσMn)]

= Sp
(σMn)

(A∗1nAMn) (26)

which implies

a∗0n = −a∗Mn. (27)

Similarly, from

	B
mN = Sp

(σmN )

(BmNB∗mN+1) = Sp
(σNn)

(B∗m1BmN) (28)

	C
Mn = Sp

(σMn)

(CMn+1C
∗
M+1n) = Sp

(σMn)

(C∗1nCMn+1) (29)

	C
mN = Sp

(σmN )

(CmN+1C
∗
m+1N) = Sp

(σmN )

(Cm1C
∗
m+1N) (30)

we have

b∗m0 = −b∗mN (31)

c∗0n = −c∗Mn (32)

cm0 = cmN . (33)

Since cm0 = cmN , 	C
mN need not be treated as a boundary weight, and only 	A

Mn, 	B
mN

and 	C
Mn should be considered. However, this situation becomes ambiguous when we take

a Fourier transform of these Grassmann variables with a single set of exponential factors
in equations (56) and (57). Because the Fourier exponential factors are associated with
directions in M and N, the sign factor in front of b∗mN takes effect simultaneously on b∗mN and
cmN . Therefore, the real situation is that instead of the relation in equation (33), we must take

cm0 = −cmN . (34)
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A self-consistent way to assign a minus sign to cm0 and obtain the relation in equation (34)
is interchanging Cm1 in equation (30) with another Grassmann factor. An equivalent but more
convenient approach is to consider the rearrangement of B∗m1 in the boundary weight together
with the rearrangement of Cm1 in the reduced partition function. To see this, we express the
reduced partition function as

Q̃ = Sp
(a,b,c)

{
Sp
(σ )

[(
M−1∏
m=1

N∏
n=1

	A
mn	

C
mn

)
	B

(
M∏

m=1

N−1∏
n=1

BmnB
∗
mn+1

)]}
(35)

with the boundary weight 	B

	B = Sp
(a,b,c)

[(
N∏

n=1

	A
Mn

)(
M∏

m=1

	B
mN

)(
N∏

n=1

	C
Mn

)]

= Sp
(a,b,c)

[(
M∏

m=1

m−→
B∗m1

)(
N∏

n=1

n←−−−−
C∗1nA

∗
1n

)
AM1

(
N∏

n=2

n−−−−−→
CMnAMn

)
CM1

M∏
m=1

m←−−
BmN

]

(36)

and
M−1∏
m=1

N∏
n=1

	A
mn	

C
mn =

M−1∏
m=1

N∏
n=1

AmnCmn+1C
∗
m+1nA

∗
m+1n

=
M−1∏
m=1

Am1

(
N∏

n=2

n←−−−−−
CmnAmn

)
Cm1

(
N∏

n=1

n−−−−−−−→
C∗m+1nA

∗
m+1n

)
.

(37)

Here, arrows have been used to indicate the orders of the products in m and n. When we move

B∗m1 from the left of
∏N

n=1

n←−−−−
C∗1nA

∗
1n to the right of

∏N
n=1

n←−−−−
C∗1nA

∗
1n in equation (36), B∗m1 passes

2N Grassmann factors, but for moving Cm1 from the right of
∏N

n=2

n←−−−−−
CmnAmn to the left of Am1 in

equations (36) and (37), Cm1 passes only 2N − 1 Grassmann factors. Then by moving B∗m1
from left to right, and simultaneously moving Cm1 from right to left, we can assign to the
Grassmann variable in Cm1 an additional minus sign compared with the Grassmann variable
in B∗m1, and hence obtain the relation of equation (34).

Accordingly, we interchange B∗ and C∗A∗ in equation (36) to obtain the arrangement of
C∗A∗B∗ according to the identity [30]

B+(CA)+ = 1
2 [(CA)+B+ + (CA)+B− + (CA)−B+ − (CA)−B−] (38)

with superscripts + and − being the sign factors in boundary Grassmann factors A∗1n, B∗m1

and C∗1n, and simultaneously move Cm1 from the right of
∏N

n=2

n←−−−−−
CmnAmn to the left of Am1 in

equations (36) and (37). Here we note that the superscripts + and − respectively correspond
to periodic and antiperiodic boundary conditions imposed on the spin variables and in turn on
the Grassmann variables. Hence, the reduced partition function becomes

Q̃ = 1
2

(
Q̃γ

∣∣
�1

+ Q̃γ

∣∣
�2

+ Q̃γ

∣∣
�3
− Q̃γ

∣∣
�4

)
(39)

with

Q̃γ = Sp
(a,b,c)

{
Sp
(σ )

[(
M−1∏
m=1

m−−−−−→
�m�∗m+1

)
	γ

(
M∏

m=1

N−1∏
n=1

BmnB
∗
mn+1

)]}
(40)
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and

	γ = Sp
(a,b,c)

{
Sp
(σ )

[
�∗1

(
M∏

m=1

m−→
B∗m1

)
�M

(
M∏

m=1

m←−−
BmN

)]}
(41)

where we have defined

�m =
N∏

n=1

n−−−−−→
CmnAmn and �∗m =

N∏
n=1

n←−−−−−
C∗mnA

∗
mn (42)

and the boundary conditions �1, �2, �3, �4 are defined as

�1 = (a∗0n = −a∗Mn, b∗m0 = −b∗mN, c∗0n = −c∗Mn) (43)

�2 = (a∗0n = −a∗Mn, b∗m0 = +b∗mN, c∗0n = −c∗Mn) (44)

�3 = (a∗0n = +a∗M,n, b∗m0 = −b∗mN, c∗0n = +c∗M,n) (45)

�4 = (a∗0n = +a∗M,n, b∗m0 = +b∗mN, c∗0n = +c∗M,n). (46)

In this way, the configurations of the reduced partition function can be further rearranged and
expressed as

Q̃γ = Sp
(a,b,c)

Sp
(σ )

{(
M−1∏
m=1

m−−−−−→
�m�∗m+1

)
�∗1

(
M∏

m=1

m−→
B∗m1

)
�M

(
M∏

m=1

n←−−
BmN

)
M∏

m=1

N−1∏
n=1

BmnB
∗
mn+1

}

= Sp
(a,b,c)

Sp
(σ )

{(
M∏

m=1

m−−−−−−→
�∗mB∗m1�m

)(
M∏

m=1

n←−−
BmN

)(
M∏

m=1

N−1∏
n=1

BmnB
∗
mn+1

)}
. (47)

To have a complete mirror-ordered form, we have to rearrange the terms in the last two
brackets. To achieve this, first we note that

Q̃γ = Sp
(a,b,c)

Sp
(σ )




M∏
m=1

m−−−−−−−−−−−−−−−−−−−−−−−→
�∗mB∗m1

(
N−1∏
n=1

n−−−−−→
CmnAmn

)
CmNAmN

(
M∏

m=1

m←−−
BmM

)
M∏

m=1

N−1∏
n=1

BmnB
∗
mn+1




= Sp
(a,b,c)

Sp
(σ )




M∏
m=1

m−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
�∗m

(
N−1∏
n=1

n−−−−−−−−−−−→
B∗mnCmnAmnBmn

)
B∗mNCmNAmN

(
M∏

m=1

m←−−
BmN

)
 .

(48)

The boundary term of m = M , denoted by T, can be formulated as

T = �∗M

(
N−1∏
n=1

n−−−−−−−−−−−−→
B∗MnCMnAMnBMn

)
B∗MNCMNAMNBMN

=
(

N∏
n=1

n←−−−−−
C∗MnA

∗
Mn

)
 Ly∏

n=1

n−−−−−−−−−−−−→
B∗MnCMnAMnBMn




=
N∏

n=1

C∗MnA
∗
MnB

∗
MnCMnAMnBMn (49)
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due to the fact that Sp
(σmn)

[C∗MnA
∗
MnB

∗
MnCMnAMnBMn] for a given n is a commutable object. By

continuing such construction from m =M down to m = 1, we can obtain the expression

Q̃γ = Sp
(a,b,c)

{
M∏

m=1

N∏
n=1

Sp
(σmn)

[C∗mnA
∗
mnB

∗
mnCmnAmnBmn]

}
. (50)

For this partition function, the factors containing the same spin are grouped together and
we can perform the average over the spins. As a result, we have

Q̃γ =
∫ M∏

m=1

N∏
n=1

da∗mn damn db∗mn dbmn dc∗mn dcmn exp

(
M∑

m=1

N∑
n=1

Fmn

)
(51)

with

Fmn = amna
∗
mn + bmnb

∗
mn + cmnc

∗
mn + r1r3c

∗
m−1na

∗
m−1n + (r3c

∗
m−1n + r1a

∗
m−1n)r2b

∗
mn−1

+ (r3c
∗
m−1n + r1a

∗
m−1n + r2b

∗
mn−1)cmn−1 + (r3c

∗
m−1n + r1a

∗
m−1n + r2b

∗
mn−1

+ cmn−1)amn + (r3c
∗
m−1n + r1a

∗
m−1n + r2b

∗
mn−1 + cmn−1 + amn)bmn. (52)

Since there is no mix on amn and bmn, the integral in the above expression can be simplified
by integrating the amn and bmn fields by means of the identity∫

db da exp(λab + aL + L′b) = λ exp(λ−1LL′) (53)

where a, b are Grassmann variables, L, L′ are linear fermionic forms independent of a, b and
λ is a parameter. The result then becomes

Q̃γ =
∫ M∏

m=1

N∏
n=1

dg∗mn dgmn dc∗mn dcmn exp

(
M∑

m=1

N∑
n=1

Gmn

)
(54)

with

Gmn = cmnc
∗
mn + gmng

∗
mn + r1r3c

∗
m−1ngm−1n − (r3c

∗
m−1n + r1gm−1n)r2g

∗
mn−1

+ (r3c
∗
m−1n + r1gm−1n − r2g

∗
mn−1)cmn−1

− (r3c
∗
m−1n + r1gm−1n − r2g

∗
mn−1 + cmn−1)(gmn + g∗mn) (55)

where we have changed the notation for the fields by (a∗mn, b
∗
mn)→ (gmn,−g∗mn). This is the

pure fermionic representation of the reduced partition function.

3. Exact solution

Next, to carry out the integration, we have to use the technique of Fourier transform to treat
the Grassmann variables which mix together with the variables at different sites. The Fourier
transformation is defined as

Xmn = 1√
MN

M−1∑
p=0

N−1∑
q=0

Xpq e−i 2π
M

mp e−i 2π
N

nq (56)

and

X∗mn =
1√
MN

M−1∑
p=0

N−1∑
q=0

X∗pq ei 2π
M

mp ei 2π
N

nq (57)

where the variables Xmn and X∗mn denote one of the variables {cmn, gmn} and {c∗mn, g
∗
mn}

respectively.
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After performing the Fourier transformation, the partition function becomes

Q̃γ =
M−1∏
p=0

N−1∏
q=0

∫
dVpq exp(Hpq) (58)

with the measure dVpq defined as

dVpq = dg∗pq dgpq dc∗pq dcpq (59)

and the function Hpq is given by

Hpq =
(

1− r3 e−i 2π
M

p ei 2π
N

q
)

cpqc
∗
pq +

(
r2 − ei 2π

N
q
)

cpqg
∗
pq + r3

(
r1 − e−i 2π

M
p
)

c∗pqgpq

− ei 2π
N

q
(

1 + r1 e−i 2π
M

p
)

cpqgM−pN−q − r3 e−i 2π
M

p
(

1 + r2 ei 2π
N

q
)

c∗pqg
∗
M−pN−q

+
(

1− r1 ei 2π
M

p − r2 e−i 2π
N

q − r1r2 ei 2π
M

p e−i 2π
N

q
)

gpqg
∗
pq

− r1 ei 2π
M

pgpqgM−pN−q + r2 e−i 2π
Ly

q
g∗pqg

∗
M−pN−q. (60)

Because Hpq contains not only the variables, Xpq and X∗pq , but also the variables, XM−pN−q

and X∗M−pN−q , instead of calculating Q̃γ it is easier to calculate Q̃2
γ given by

Q̃2
γ =

M−1∏
p=0

N−1∏
q=0

∫
dVpq dVM−pN−q exp(Hpq + H ∗M−pN−q). (61)

Here H ∗M−pN−q can be obtained from Hpq by replacing p by M − p and q by N − q for the
Grassmann variables and replacing the coefficient in front of the Grassmann variables by its
complex conjugate. Completing the integration yields

Qγ =
M−1∏
p=0

N−1∏
q=0

[
A0 − A1 cos

2πp

M
− A2 cos

2πq

N
− A3 cos

(
2πp

M
− 2πq

N

)]1/2

(62)

with

A0 = α2
0 + α2

1 + α2
2 + α2

3 (63)

A1 = 2(α0α1 − α2α3) (64)

A2 = 2(α0α2 − α1α3) (65)

A3 = 2(α0α3 − α1α2) (66)

where α0, α1, α2 and α3 are given by equations (6) and (7) for pt and hc lattices respectively.

3.1. Periodic–periodic boundary condition

According to equation (39), the reduced partition function for ferromagnetic lattices with pp
boundary condition is

Qpp = 1

2

[
� 1

2 , 1
2

+ � 1
2 ,0 + �0, 1

2
− sgn

(
θ − θc

θc

)
�00

]
(67)

where the superscript p refers to periodic boundary condition and

�µν =
M−1∏
p=0

N−1∏
q=0

[
A0 − A1 cos

2π(p + µ)

M
− A2 cos

2π(q + ν)

N

−A3 cos

(
2π(p + µ)

M
− 2π(q + ν)

N

)]1/2

. (68)
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The sign factor in front of the last term is a result of the standard consideration of the Grassmann
integral over the zero-mode variable p = q = 0 for ferromagnetic couplings [30, 35]. When
the integral of equation (61) is carried out, it is always positive, but this is not the case for
equation (58). There are unpaired terms from zero-mode in equation (58) under various
boundary conditions and they contribute a sign factor to Q4 for 0 � ti � 1. The partition
function for pp boundary condition then becomes

Zpp = 1

2
2Ns

[
nb∏

i=1

cosh(βJi)

]Ns [
� 1

2 , 1
2

+ � 1
2 ,0 + �0, 1

2
− sgn

(
θ − θc

θc

)
�00

]
. (69)

Furthermore, the free energy density per kBT of the system defined by

f pp = − 1

Ns

ln Zpp (70)

then takes the form

f pp = − (Ns − 1)

Ns

ln 2−
nb∑
i=1

ln[cosh(βJi)]− 1

Ns

ln

[
� 1

2 , 1
2

+ � 1
2 ,0 + �0, 1

2

− sgn

(
θ − θc

θc

)
�00

]
. (71)

3.2. Periodic–antiperiodic boundary condition

For pa boundary condition, equation (38) is replaced by

B−(CA)+ = 1
2 [(CA)+B+ + (CA)+B− − (CA)−B+ + (CA)−B−] (72)

and the partition function has the form

Zpa = 1

2
2Ns

[
nb∏
i=1

cosh(βJi)

]Ns [
� 1

2 , 1
2

+ � 1
2 ,0 −�0, 1

2
+ sgn

(
θ − θc

θc

)
�00

]
(73)

where the superscript a refers to antiperiodic boundary condition. The corresponding free
energy density per kBT is

f pa = − (Ns − 1)

Ns

ln 2−
nb∑
i=1

ln[cosh(βJi)]− 1

Ns

ln

[
� 1

2 , 1
2

+ � 1
2 ,0 −�0, 1

2

+ sgn

(
θ − θc

θc

)
�00

]
. (74)

3.3. Antiperiodic–periodic boundary condition

Similarly, for ap boundary condition, equation (38) is replaced by

B+(CA)− = 1
2 [(CA)+B+ − (CA)+B− + (CA)−B+ + (CA)−B−] (75)

and

Zap = 1

2
2Ns

[
nb∏
i=1

cosh(βJi)

]Ns [
� 1

2 , 1
2
−� 1

2 ,0 + �0, 1
2

+ sgn

(
θ − θc

θc

)
�00

]
. (76)

The corresponding free energy density per kBT is

f ap = − (Ns − 1)

Ns

ln 2−
nb∑
i=1

ln[cosh(βJi)]− 1

Ns

ln

[
� 1

2 , 1
2
−� 1

2 ,0 + �0, 1
2

+ sgn

(
θ − θc

θc

)
�00

]
. (77)



5200 M-C Wu and C-K Hu

3.4. Antiperiodic–antiperiodic boundary condition

For aa boundary condition, equation (38) becomes

B−(CA)− = 1
2 [−(CA)+B+ + (CA)+B− + (CA)−B+ + (CA)−B−] (78)

and the partition function is

Zaa = 1

2
2Ns

[
nb∏
i=1

cosh(βJi)

]Ns [
−� 1

2 , 1
2

+ � 1
2 ,0 + �0, 1

2
+ sgn

(
θ − θc

θc

)
�00

]
. (79)

The corresponding free energy density per kBT is

f aa = − (Ns − 1)

Ns

ln 2−
nb∑

i=1

ln[cosh(βJi)]− 1

Ns

ln

[
−� 1

2 , 1
2

+ � 1
2 ,0 + �0, 1

2

+ sgn

(
θ − θc

θc

)
�00

]
. (80)

Note that by taking t3 = 0, nb = 2 and Ns = Nb = MN , we have A3 = 0,

�µν =
M−1∏
p=0

N−1∏
q=0

[
A0 − A1 cos 2π(p+µ)

M
− A2 cos 2π(q+ν)

N

]1/2
(81)

and all the results we obtained reduce to those of the sq lattice.
Accordingly, the critical temperature can be determined in the thermodynamic limit from

the zero of the free energy contributed by the zero mode,

A0 − A1 − A2 − A3 = 0. (82)

It follows that for isotropic coupling, we have

θc =
[

1
2 ln(1 +

√
2)
]−1
= 2.269 185 . . . (83)

for the sq lattice with θ = kBT /J ,

θc =
[

1
2 ln(
√

3)
]−1
= 3.640 956 . . . (84)

for the pt lattice and

θc =
[

1
2 ln(2 +

√
3)
]−1
= 1.518 651 . . . (85)

for the hc lattice.

4. Specific heat

The specific heat per spin C/kB for the Ising model on M × N sq, pt and hc lattices with
isotropic couplings are shown, respectively, in figures 2(a), 3(a), 4(a) for M/N = 1, and
in figures 2(b), 3(b), 4(b) for M/N = 1/2. Figures 3(c) and 4(c) show, respectively, the
results for pt and hc lattices under pa and aa boundary conditions and for M/N = 1, 1/2, 1/4.
In general, for three lattices with the same lattice size, the specific heat under pp boundary
condition is always larger than those under other boundary conditions. Note that for sq lattices
with M/N = 1, Cpa and Caa are distinct in figure 2(a), but for pt and hc lattices with M/N = 1
in figures 3(a) and 4(a), they coincide and are non-distinguishable due to the last term in the
bracket of equation (68), which is associated with the structure symmetries of pt and hc lattices.
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Figure 2. The specific heat per spin for (a) N × N square Ising lattices with isotropic couplings
under pp, pa, ap and aa boundary conditions, and (b) M × N square Ising lattices with isotropic
couplings and aspect ratio M/N = 1/2 under pp, pa, ap and aa boundary conditions. The critical
point θc is marked by a vertical line.

These behaviours can be violated by taking aspect ratio ξ = M/N �= 1, and the results are
shown in figures 3(b), (c) and 4(b), (c).

We further study the displacements of the maxima of Cpp and Cpa. The shift behaviours
of the maximum in CNN (T ) are shown in figure 5. The slopes of the curves imply the rates
of approach of Cpp and Cpa to their limiting behaviours. For the periodic–periodic boundary
condition, these lattices have linear behaviours in N →∞ and can be described by the formula
[36],

−(Tc − Tmax)

Tc

∼ a

N
as N →∞. (86)

For periodic–antiperiodic boundary condition, the corresponding formula is also provided by
the finite-size scaling ansatz. However, for numerical analysis, instead of equation (86), we use

−(Tc − Tmax)

Tc

= a

N
+

b1

N2
+

b2

N3
+ · · · . (87)

As a result, we have a
pp
s = 0.360, b

pp
1,s = −0.47, a

pa
s = 0.18, b

pa
1,s = −2.19, for the sq

lattice, a
pp
t = 0.363, b

pp
1,t = −0.91, a

pa
t = 0.09, b

pa
1,t = 0.60 for the pt lattice, a

pp
h = 0.268,

b
pp
1,h = 0.24, apa

h = 0.09, bpa
1,h = 0.87 for the hc lattice, and the value of b2 is of the order of 1.

The values of app are larger than apa for three lattices, and this implies that the approach to
limiting behaviour for pp boundary condition is faster than the pa boundary condition. Since
the logarithmic divergence of the specific heat is independent of the boundary conditions and
cannot be used to distinguish Cpp and Cpa of a large lattice, then the values of a may be used
to distinguish the two boundary conditions.

5. Discussion

We have solved the exact partition functions of M × N pt and hc lattices with different
boundary conditions. These results can provide the analytical background for further studies
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Figure 3. The specific heat per spin for (a) N × N plane triangular Ising lattices with isotropic
couplings under pp, pa, ap and aa boundary conditions, (b) M × N plane triangular Ising
lattices with isotropic couplings and aspect ratio M/N = 1/2 under pp, pa, ap and aa boundary
conditions, and (c) M ×N plane triangular Ising lattices with isotropic couplings and aspect ratio
M/N = 1, 1/2, 1/4 under pa and aa boundary conditions. The critical point θc is marked by a
vertical line.

on the effects of lattice structures and boundary conditions on the critical properties and critical
finite-size corrections of the Ising model.

Firstly, universal finite-size scaling functions for critical systems have received much
attention in recent years [15–17, 20, 21, 37, 38], and it is well known that the finite-size
scaling functions depend on the boundary conditions [14]. Hu et al and Okabe and Kikuchi
have discussed the difference in the finite-size scaling functions for the lattice models under
periodic boundary and free boundary conditions in connection with the universal finite-size
scaling function for the percolation problem [15] and the Ising model [17] respectively.
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Figure 4. The specific heat per spin for (a) N × N honeycomb Ising lattices with isotropic
couplings under pp, pa, ap and aa boundary conditions, (b) M ×N honeycomb Ising lattices with
isotropic couplings and aspect ratio M/N = 1/2 under pp, pa, ap and aa boundary conditions, and
(c) M ×N honeycomb Ising lattices with isotropic couplings and aspect ratio M/N = 1, 1/2, 1/4
under pa and aa boundary conditions. The critical point θc is marked by a vertical line.

Other boundary conditions, such as the Ising model on an M × N simple-quartic lattice
embedded on a Möbius strip and Klein bottle have also been studied [18]. Kaneda and Okabe
found that there is an interesting aspect ratio dependence of the value of the Binder parameter
at criticality for various boundary conditions [19]. It is then interesting to have a rigorous
test of finite-size scaling function and critical finite-size corrections for different planar Ising
models under various boundaries.

In addition, by using the Monte Carlo method, Hu et al [15, 16], and Tomita et al [21]
have found that the universal finite-size scaling functions of the scaled quantities for sq, pt
and hc lattices depend on the aspect ratios and have very good universal finite-size scaling
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Figure 5. (a) Variation of (Tmax − Tc) with finite N for N × N square Ising lattices with
isotropic couplings under pp and pa boundary conditions. The broken lines are given by
(Tmax − Tc)/Tc = a/N and indicate the limiting behaviour as N → ∞. (b) Variation of
(Tmax − Tc) with finite N for N ×N plane–triangular Ising lattices with isotropic couplings under
pp and pa boundary conditions. (c) Variation of (Tmax − Tc) with finite N for N ×N honeycomb
Ising lattices with isotropic couplings under pp and pa boundary conditions.

behaviours when the aspect ratios of these lattices have the proportions 1 :
√

3/2 :
√

3. This
further implies lattice-structure-dependence of the universal finite-size scaling function and
it would be a rigorous test from the analytical perspective. For the aforementioned topics,
we have found finite-size scaling behaviours for sq, pt and hc lattices under period–aperiodic
boundary conditions. By selecting a very small number of nonuniversal metric factors, we
have further found very good universal finite-size scaling behaviours for these lattices, and the
results will be presented in another paper.
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Finally, the discussion of specific heat in this paper also inspires another problem. Quite
recently, Izmailian and Hu have found an exact amplitude ratio and finite-size corrections
for the M × N sq lattice Ising mode on a torus [8], and new sets of the universal amplitude
ratios of subdominant correction to scaling amplitudes [9]. The results of section 4 suggest
that app/apa for sq, pt and hc lattices are roughly 2, 4 and 3. The question is ‘are there exact
relations between app and apa for these lattices?’ It is interesting to study this question and to
have a heuristic argument on this simple relation.

Acknowledgments

The authors wish to thank V N Plechko for valuable discussions and a critical reading of the
paper. This work was supported in part by the National Science Council of the Republic of
China (Taiwan) under grant no NSC 90-2112-M-001-074.

References

[1] Stanley H E 1971 Introduction to Phase Transitions and Critical Phenomena (New York: Oxford University
Press)

[2] Kadanoff L P 1990 Physica A 163 1
[3] Onsager L 1944 Phys. Rev. 65 117
[4] Wu M C, Huang M C, Luo Y P and Liaw T M 1999 J. Phys. A: Math. Gen. 32 4897
[5] Hu C K, Chen J A, Izmailian N Sh and Kleban P 1999 Phys. Rev. E 60 6491
[6] de Queiroz S L A 2000 J. Phys. A: Math. Gen. 33 721
[7] Ivashkevich E V, Izmailian N Sh and Hu C K 2001 Kronecker’s double series and exact asymptotic expansion

for free models of statistical mechanics on torus Preprint cond-mat/0102470
[8] Izmailian N Sh and Hu C K 2002 Phys. Rev. E 65 036103 (Preprint cond-mat/0009024)
[9] Izmailian N Sh and Hu C K 2001 Phys. Rev. Lett. 86 5160

[10] Salas J 2002 J. Phys. A: Math. Gen. 35 1833 (Preprint cond-math/0110287)
[11] Janke W and Kenna R 2002 Phys. Rev. B 65 064110
[12] Izmailian N Sh, Oganesyan K B and Hu C K 2002 Phys. Rev. E 65 056132 (Preprint cond-mat/0202282)
[13] Barber M N 1983 Phase Transitions and Critical Phenomena ed C Domb and J L Lebowitz vol 8 (New York:

Academic)
[14] Hu C K 1994 J. Phys. A: Math. Gen. 27 L813
[15] Hu C K, Lin C Y and Chen J A 1995 Phys. Rev. Lett. 75 193

Hu C K, Lin C Y and Chen J A 1995 Phys. Rev. Lett. 75 2786E
Hu C K, Lin C Y and Chen J A 1995 Physica A 221 80

[16] Hu C K and Lin C Y 1996 Phys. Rev. Lett. 77 8
[17] Okabe Y and Kikuchi M 1996 Int. J. Mod. Phys. C 7 287
[18] Lu W T and Wu F Y 2001 Phys. Rev. E 63 26017
[19] Kaneda K and Okabe Y 2001 Phys. Rev. Lett. 86 2134
[20] Okabe Y, Kaneda K, Kikuchi M and Hu C K Phys. Rev. E 59 1585
[21] Tomita Y, Okabe Y and Hu C K 1999 Phys. Rev. E 60 2716
[22] Kaufman B 1949 Phys. Rev. 76 1232
[23] Nash C and O’Connor D 1999 Ann. Phys. 273 72
[24] Schultz T D, Mattis D C and Lieb E H 1964 Rev. Mod. Phys. 36 856
[25] Kac M and Ward J C 1952 Phys. Rev. 88 1332
[26] Green H S and Hurst C A 1964 Order–Disorder Phenomena (New York: Interscience)
[27] Kasteleyn P W 1963 J. Math. Phys. 4 287
[28] Fisher M E 1966 J. Math. Phys. 7 1776
[29] Stephenson J 1964 J. Math. Phys. 5 1009
[30] Plechko V N 1985 Theor. Math. Phys. 64 748
[31] Plechko V N 1988 Physica A 152 51
[32] Plechko V N and Sobolev I K 1991 Phys. Lett. A 157 335
[33] Liaw T M, Huang M C, Lin S C and Wu M C 1999 Phys. Rev. B 60 12994



5206 M-C Wu and C-K Hu

[34] Berezin F A 1966 The Method of Second Quantization (New York: Academic)
[35] Wu M C 1999 Analytical analyses of coupling-anisotropy and finite-size effects on interfacial tensions and

specific heats for a class of Ising strips PhD Thesis Chung-Yuan Christian University, Taiwan
[36] Ferdinand A E and Fisher M E 1969 Phys. Rev. 185 832
[37] Hsu H P, Lin S C and Hu C K 2001 Phys. Rev. E 64 016127
[38] Watanabe H et al 2001 J. Phys. Soc. Japan 70 1537


